НОВОСТИ

dxdt.ru: занимательный интернет-журнал. Gps навигатор высокоточный


GPS с точностью до сантиметра / Блог компании Intel / Хабр

Современные технологии спутниковой навигации обеспечивают определение местоположения с точностью порядка 10-15 метров. В большинстве случаев этого достаточно, однако, в некоторых случаях требуется большее: скажем, автономный дрон, достаточно быстро перемещающийся над земной поверхностью, будет чувствовать себя неуютно в облаке из координат с метровыми погрешностями.

Для уточнения спутниковых данных используются дифференциальные системы и RTK (real-time kinematics) технологии, но до последнего времени подобного рода устройства были дорогими и громоздкими. Последние достижения цифровой техники в лице микрокомпьютера Intel Edison помогли решить эту проблему. Итак, встречайте: Reach – первый компактный высокоточный приемник GPS, очень доступный по цене, и, к тому же, разработанный в России. Для начала поговорим немного о дифференциальных технологиях, которые позволяют Reach добиться столь высоких результатов. Они хорошо известны и достаточно широко внедрены. Дифференциальные навигационные системы (ДНСС) улучшают точность определения местоположения и скорости подвижных пользователей за счет предоставления данных измерений или корректирующей информации от одной или нескольких базовых станций.

Координаты каждой базовой станции известны с высокой точностью, так что данные измерений станцией служат для калибровки данных расположенных рядом приемников. Приемник может вычислить теоретическое расстояние и время распространения сигнала между собой и каждым спутником. Когда эти теоретические значения сравниваются с данными наблюдений, то различия представляют собой ошибки в принимаемых сигналах. Корректирующая информация (данные RTCM) получается из этих различий.

Точность определения координат с помощью Reach. Обратите внимание на масштаб.

Корректирующая информация может получаться устройством Reach из двух источников. Во-первых от общедоступной сети базовых станций через интернет по протоколу NTRIP (Networked Transport of RTCM via Internet Protocol), реализующего идею, описанную выше, применительно к глобальной компьютерной сети. Во-вторых, с помощью второго Reach, занимающего стационарную позицию вблизи первого и являющегося, таким образом, базовой станцией в терминах ДНСС. Второй вариант предпочтительнее (точность ДНСС сильно падает с увеличением расстояния между приемником и БС) – не случайно в рамках краудфайндинговой кампании на сайте Indiegogo создатели Reach первой позицией предлагают выкупить именно набор из двух устройств.

Спецификации устройства приведены в таблице ниже. Как видим, аппаратно он состоит из 3 частей: компьютера Intel Edison, на котором запущена ОС Linux и RTK софт RTKLIB; GPS-приемника U-blox NEO-M8T и антенны Tallysman TW4721. Обратите внимание, что приемник поддерживает все существующие спутниковые системы: GPS, ГЛОНАСС, Beidou и QZSS. Вся эта совокупность программных и аппаратных компонент обеспечивает впечатляющую точность определения координат: до 2 см!

Спутниковый приемник U-blox NEO-M8T — 72 channels, output rate up to 18Hz, supports GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1, SBAS L1 C/A: WAAS, EGNOS, MSAS, Galileo-ready E1B/C
Компьютерная платформа Intel Edison — dual-core 500MHz
Интерфейсы I2C, UART, GPIO, TimeStamp, OTG USB, Bluetooth, Wi-Fi, GNSS
Антенна Tallysman TW4721 Dual Feed GPS/BeiDou/Galileo/GLONASS
Размеры 26х36 мм
Вес 13 г
Кому может пригодиться подобное устройство? Как уже говорилось выше, создателям различной мобильной робототехники, автономной и не очень; причем, учитывая его низкую стоимость (предзаказ $545 за двойной набор и $285 за одинарный) не только профессиональным, но и энтузиастам. Далее, составителям различного рода карт, опять-таки, в том числе и любителям. Ну и просто занудам, желающим знать свое местоположение с точностью до сантиметра.

Создатели Reach, компания Emlid, удачно выступили на сайте indiegogo: меньше чем за месяц собрана почти двойная запрошенная сумма. Значит, проект непременно будет реализован. У вас еще есть время, чтобы сделать предзаказ и оказаться в числе первых, кто получит принципиально новое навигационное устройство. Рассылка товара запланирована на июль.

habr.com

Точность измерений навигаторов ГЛОНАСС / GPS

Точность измерений с помощью ГЛОНАСС/GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов.

"Бытовые" GPS-приборы, для "гражданских" пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5–15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте – от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды).

Измерители высокой точности "геодезического класса" – точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например – удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование - может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать многосистемный Glanas / GPS-приёмник – на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают "двойную надёжность и точность" (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины - лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений.

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и "далеко" – у линии горизонта (всё это называется "плохая геометрия") и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) - после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури, после мощных солнечных вспышек - возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении "вспомогательных данных A-GPS сервера местоположения" по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) - увеличивается скорость определения координат и расположения на карте.

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) – дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на G P S-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), многосистемный (Glonas / Gps) приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника ГПС и два ГЛОНАСС. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт).

Быстрый, "горячий" (длительностью в первые секунды) или "тёплый старт" (полминуты или минута, по времени) приёмного устройства - возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее - до нескольких секунд).

Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат - нужны, как минимум, четыре сп-ка.

Подробнее читайте на Интернет-странице сайта:http://www.kakras.ru/doc/glonass-gps-galileo.htmlОпубликовано: 29 ноября 2014 года

kakras.livejournal.com

Автоматический навигатор, без спутников

Сейчас доступно огромное количество навигационной техники, работающей на основе глобальной спутниковой системы. Точно узнать своё местоположение может каждый, специальных навыков не требуется. Между тем, интересно представить, как может быть устроен подобный по простоте применения навигатор, работающий без спутников GPS. И без использования наземных радиопередатчиков с известными координатами. (Мало ли – вдруг инфраструктура сломалась?)

Итак, речь о достаточно компактном электронном устройстве, которое выполняет функции типичного современного GPS-навигатора (карты, экран, показывает местоположение в реальном времени), но при этом не зависит от рукотворных внешних источников навигационной информации. Понятно, что электронная начинка, операционные системы подходят от современных навигаторов. С исходными картами тоже более или менее понятно: загрузили файлы в память, используем. Конечно, карты будут устаревать. Это особенно вероятно в ситуации, приведшей к разрушению важных для Цивилизации элементов инфраструктуры – GPS, сотовой связи. Они явно отключились неспроста. Но леса, реки, холмы, поля и озёра – заведомо остаются на своих местах. Как и многие здания, кстати. Да и прочие изменения происходят не столь быстро, чтобы картографические файлы оказались совсем бесполезны.

Прежде всего, навигатор должен иметь автономные высокоточные часы. Это основа. Вполне достижимая. Кроме того, для работы в реальном времени (запись траектории движения, информирование о тех или иных “точках интереса”) однозначно потребуется не менее автономная, чем часы, встроенная система инерциальной навигации. Гироскопы, акселерометры. Датчики такие есть, встроить их в корпус компактного прибора тоже возможно. Естественно, нужен и компас. А точнее – хорошие датчики магнитного поля Земли.

Главная проблема такая: как инициализировать инерциальную систему в начале работы, и корректировать её ошибки во время движения навигатора?

Первое, что приходит на ум – древняя и нерушимая схема: навигация по звёздам. Для работы потребуется чувствительная встроенная камера, лучше – три. Что, опять же, не является технологической проблемой. Используя атласы звёздного неба, данные о собственной ориентации в пространстве (гироскопы, акселерометры, компас) и точные часы, программное обеспечение навигатора сможет автоматически вычислить текущие координаты, если пользователь просто направит устройство камерами в сторону чистого ночного неба, ну и разрешит понаблюдать это небо несколько раз, через определённые промежутки времени. Фиксирование движения изображений звёзд позволит компенсировать неточности, присущие встроенным камерам – всё ж это не телескопы.

Впрочем, особенной точности тут добиться сложно. Но больших отклонений в работе инерциальной системы удастся избежать, а главное, появляется инструмент для её инициализации после сбоя или отключения для экономии батарей. Днём навигатору, для осуществления коррекции, остаётся наблюдать за Солнцем. Кроме того, заметные трудности возникнут, если небо затянуто облаками. Несколько дней подряд.

Есть второй метод: привязка к местности. На первый взгляд, тут тоже помогут камеры. Можно даже придумать разные алгоритмы взаимодействия пользователь – навигатор: “справа от вас находится крупный одиночный валун серого цвета, направьте камеру номер два в сторону этого валуна”, и так далее. Углы и расстояния навигатор может измерять, сравнивая полученные камерами изображения с данными карт: оптические параметры объектива камеры известны, поэтому измерение “расстояния” между двумя элементами карты на полученном изображении даёт расстояние до этих элементов от навигатора. Выбрать объекты можно попросить пользователя. Проблема не только в том, что карты обычно неточные, но и в том, что весьма непросто точно определить реальные границы опорных объектов (это могут быть, например, холмы, здания) на изображении.

Помочь может всё та же инерциальная система, ошибки в которой мы хотим корректировать. Предположим, пользователь плавно перемещает навигатор на некоторое расстояние, направив его камеры в заданную сторону. Инерциальная система позволит довольно точно определить пройденный “базис” и, в результате, получаем дальномер, который, при помощи измерения параллакса, вычисляет и расстояние, и угловые координаты опорных точек. Но точность всё равно оставляет желать лучшего. Данный метод корректировки зависит от степени детализации карты: может просто не найтись подходящих точек привязки.

Между прочим, для продвинутых пользователей, может быть доступен такой вариант калибровки: нужно отметить на карте точку, в которой в данный момент пользователь находится. Определить эту точку пользователю предстоит самому. На то он и продвинутый. Подошёл, скажем, к верстовому столбу, отметил “я стою здесь” на карте, всё – навигатор откалиброван.

Получается, что моментально получить координаты на карте в произвольном месте поверхности Земли, с точностью до нескольких метров, при помощи гипотетического портативного навигатора, не использующего GPS (и аналоги) – не выйдет. Что ж, поэтому и придумали спутниковую навигацию. Тем не менее, можно сконструировать автономный компактный навигатор, работающий без спутников, и выдающий пусть не сверхточную, но очень полезную информацию в режиме онлайн. Пока батарейки не сядут.

()

Похожие записки:

dxdt.ru

GPS и высокоточное оружие

На фоне осени и выборной поры в США, вновь обсуждают старую тему: помехи GPS и штатовское высокоточное оружие. То есть, мол, если “создать сплошное поле помех GPS”, то крылатые ракеты и “умные бомбы” полетят сильно мимо намеченных целей.

Я, кстати, не так давно рассказывал о том, что навигация не сводится к GPS (правда, применительно к беспилотникам). Если задуматься о “поле помех”, то что можно придумать? Понятно, что такое “поле”, если бы его можно было развернуть, оказалось бы полезным: недоступность GPS усложнила бы навигацию. Впрочем, задача создания такой “массовой помехи” для военного сигнала GPS – весьма сложна.

Хитрость в том, что разработчики военных “навигаторов” знают о том, что помехи возможны, поэтому приёмники и прочее “сигнальное оборудование” GPS проектируется помехоустойчивым, так что с созданием “поля” придётся повозиться.

Есть и другие хитрости. К примеру, крылатые ракеты умеют ориентироваться с помощью инерциальной навигационной системы и по топографии местности. Скажем, в инерциальном навигаторе накапливаются ошибки, поэтому можно было бы предположить, что если GPS отсутствует в течение существенного по продолжительности отрезка полёта ракеты, то ракета существенно отклонится от намеченного курса. Вроде бы логично. Так и рассуждают.

В реальности тут есть два важных момента, меняющих положение дел. Во-первых, чтобы закрыть “существенный отрезок полёта”, придётся сделать совсем уж гигантское “поле помех”, закрывающее сотни тысяч квадратных километров. Если же помехи действуют только на небольшой территории, на завершающем этапе полёта ракеты, то каких-то особых проблем у неё не возникнет: на всём предшествовавшем пути ошибки инерциальной системы корректировались GPS, а за оставшиеся до цели километры ошибка просто не сумеет “набрать вес”.

Во-вторых, полёт ракеты корректируется “по местности”, что также позволяет исправлять ошибки инерциальной навигации. Так что даже в случае полного подавления GPS останется второй метод коррекции – “по карте”. При этом рельефы и опорные точки исследуют с помощью спутников, так что не разумно ожидать, что “карты устареют”.

С бомбами ситуация несколько иная. Хотя суперсовременные системы наведения там также используют дополнительные сенсоры, привязывающие траекторию “к местности” и к самой цели, традиционный подход всё равно базируется на инерциальной навигации и GPS. Но нужно учитывать, что современные инерциальные устройства весьма точные и бомба не собирается лететь тысячу километров сквозь ветра и горные ущелья. Если коррекция по GPS окажется невозможна, то точность попадания для “умной бомбы” ухудшится, скажем, на несколько метров, при этом всё равно оставаясь вполне практически полезной.

Есть ещё менее популярная идея с “умными, уводящими помехами”. Мол, нужно не просто “запомехить” сигнал GPS, а изменить его таким образом, чтобы ракеты/бомбы уж вообще летели “не туда”. Действительно, такие фокусы, при наличии специального оборудования, проходят для гражданских GPS-навигаторов. Там, если подсунуть приёмнику навигатора фальшивый сигнал вместо реального, можно просто управлять определением координат. То есть фактически приёмник находится в центре пустыни Сахара, но при этом изумлённый пользователь видит, что по данным на экране навигатора он как бы стоит в центре Вашингтона, округ Колумбия, США.

Но с вооружениями такой фокус не проходит. Мало того что сами приёмники во многих случаях сумеют отличить настоящий военный сигнал GPS от поддельного. Так ещё и навигационная система в целом, обнаружив расхождения между данными GPS и других “источников координат” (инерциальных, “топографических”), которые не могли бы возникнуть в реальности (физические законы же движения известны), просто перестанет учитывать сигналы GPS.

Так что нельзя считать, что помехи GPS являются каким-то “абсолютным оружием” против высокоточных систем наведения.

(Картинка: Boeing)

()

Похожие записки:

dxdt.ru

Характеристики GPS-навигаторов - технические, сравнительные

Сегодняшний рынок GPS-навигаторов пестрит самыми разными моделями, различающимися как по ценам, так и по характеристикам. Какие же качества определяют хорошую модель?

Первым делом стоит решить, для чего вам нужен прибор – для езды в городе или на трассе. Если вы приобретаете навигатор для каменных джунглей, вам имеет смысл присмотреть технические характеристики моделей с сервисом оповещения о пробках, однако такая функция весьма серьезно сказывается на цене устройства. Людям, которым нужен GPS навигатор для планирования дальних поездок, можно вполне обойтись и без этой функции. Кроме того, при выборе навигатора с опцией показа пробок нужно помнить, что устройство, получающее данные через Bluetooth обойдется вам дешевле, однако доставит больше хлопот при соединении – для передачи информации с помощью «синего зуба» требуется мобильный телефон, который будет «раздавать» интернет. Также есть модели с GPRS, однако они порой потребляют трафик на весьма крупные суммы.

Сравнительные характеристики GPS навигаторов

Очень важной сравнительной характеристикой GPS-навигатора является программное обеспечение, предустановленное на нем. В нашей стране ПО с самыми лучшими техническими характеристиками являются «Сити-Гид» и «Навител», предлагающие наиболее полные и актуальные карты всей России, а иногда и ближнего зарубежья – Украины, Прибалтики и Скандинавии.

Технические характеристики дисплеев навигаторов

Не стоит забывать и о важности большого и качественного дисплея, который позволит вам быстро увидеть всю важную информацию без существенного отрыва от дороги. Идеальной диагональю экрана сегодня считается пять дюймов – устройства с более крупными дисплеями пока кажутся громоздкими и неудобными, а с меньшего экрана куда сложнее получать информацию. Стандартное разрешение для 5-дюймового дисплея – 480х272, однако есть модели и с разрешением 800х480. Разрешение у навигатора 800х480 дает, конечно, невероятно четкую картинку, но навигатор может изредка подтормаживать из-за слабого графического процессора, особенно при сильном масштабировании карты.

Еще одной важной сравнительной характеристикой навигатора является наличие мультимедийных функций – возможность просмотра видео и прослушивания музыки. Это, между прочим, очень важный момент, ведь несмотря на то, что даже топовые модели навигаторов имеют достаточно слабое «железо», возможность посмотреть фильм или послушать любимые песни в дороге значительно поднимает настроение.

Надеемся, что предоставленная нами информация поможет вам приобрести качественный GPS-навигатор. Удачи на дорогах!

navigator-gid.ru